

"Kuch Meetha Ho Jaaye???"

V/S

MEMBERS:

- Rahul Bakhshi
- Avik Das
- Kedar Gore
- Ronney Shah
- Kshitij Sharma
- Kunal Bawari

- C 202
- C 205
- C 208
- C 236
- C 237
- C 260

Introduction

- Chocolate consumption in India is extremely low
- Per capita consumption 160 gm in the urban areas, 8-10 kg in the developed countries. In rural areas, it is even lower
- Chocolates in India are consumed as indulgence and not as a snack food
- A strong volume growth in early 90's when *Cadbury* repositioned its offerings
- An increasing consumer base is a huge opportunity in this market

Cadbury's Re-positioning

Our Work

- The positioning of "Serious Gifting option for happy occasions" is the object of our study
- Pitched directly against a strongly entrenched, traditional Indian mindset of gifting sweetmeats or 'Mithai'

Celebrations – TVC Storyboard

Celebrations – TVC Storyboard

Fooling around a bit before handing it over, Mr. Bachchan says, "Adam se bhai, rishto ki mithas hai."	MVO: "Cadbury Celebrations <i>ka</i> rich dry fruit collection. <i>Pehli bar chuninda</i> dry fruits <i>aur</i> Cadbury chocolate <i>ka anokha sangam</i> ."
As the star receives his gift his face falls on seeing a traditional	But the friend surprises him by revealing a Cadbury pack inside it.
pack.	

Celebrations – TVC Storyboard

Playing again, the actor tries to grab the pack while his friend stops him

MVO: "Cadbury Celebrations." Super: 'All gift packs are purity sealed.'

Research Objectives

- , ifting
- i. To determine whether chocolates are perceived as a serious gifting alternative to traditional sweetmeats for happy occasions
- ii. To examine the combination of factors that favors choice of chocolates over traditional sweetmeats for *serious gifting* on happy occasions
- iii. To examine the combination of factors that deters choice of chocolates over traditional sweetmeats for *serious gifting* on happy occasions
- *Concept:* Gifting
- Constructs:
 - *Casual Gifting:* Impulse gifting, mainly indulged into by the younger target audience
 - Serious Gifting: Intentful gifting, involving target audience of a higher age group

Research

- <u>Research Type:</u>
 - Descriptive

<u>Research Hypothesis:</u>

 Chocolates are not perceived as a serious gifting alternative to traditional sweetmeats for happy occasions.

Research Design

Sampling Estimation

- Vile-Parle is a Mumbai suburban area
- On the basis of a pilot study (10 respondents, convenience sampling), it is decided to have a sample size of 103 respondents for the final research (convenience sampling)
- Feedback obtained regarding the questionnaire, changes incorporated
- Respondents are from the pool of persons who indulge in *serious gifting*

Calculations for 'n'

No.	Name	Xi	X-bar - Xi	(X-bar - Xi)^2
1	Jatindu Pal Singh Kalsi	+1	0.20	0.04
2	Vijay Punjabi	0	-0.80	0.64
3	Banita Sharma	+1	0.20	0.04
4	Varun	+2	1.20	1.44
5	Rameet Arora	+2	1.20	1.44
6	Anuja Naik	+2	1.20	1.44
7	Vyankatesh	-1	-1.80	3.24
8	Abhishek Matoo	0	-0.80	0.64
9	Anil Kumar	+1	0.20	0.04
10	Sandeep	0	-0.80	0.64

Calculation of Sample Standard Deviation

- Pilot sample size (n) = 10
- X-bar = 0.8
- Variance = 1.07
- Std. Dev. (s) = 1.033

Calculation of Sample Size

Confidence	D	0.5	0.45	0.4	0.35	0.3	0.25	0.2	0.15	0.1	0.05
Level	z					Samp	le Size				
80%	1.28	7.012	8.657	10.96	14.31	19.48	28.05	43.83	77.92	175.3	701.2
85%	1.44	8.875	10.96	13.87	18.11	24.65	35.5	55.47	98.61	221.9	887.5
90%	1.65	11.65	14.39	18.21	23.78	32.37	46.61	72.83	129.5	291.3	1165
92%	1.75	13.11	16.18	20.48	26.75	36.41	52.43	81.92	145.6	327.7	1311
95%	1.96	16.44	20.3	25.69	33.56	45.67	65.77	102.8	182.7	411.1	1644
97%	2.17	20.15	24.88	31.49	41.13	55.98	80.62	126	223.9	503.9	2015
98%	2.33	23.24	28.69	36.31	47.42	64.54	92.94	145.2	258.2	580.9	2324
99%	2.57	28.27	34.9	44.17	57.69	78.52	113.1	176.7	314.1	706.7	2827

Research Inferences

Preference chart for box of chocolates

Research Inferences

- <u>Objective</u>: To validate the proposition "Chocolates are preferred over sweets as a gifting option on happy occasions"
- <u>Null Hypothesis</u>: 50% population prefers chocolates over sweets
 H₀: p = 0.5
- <u>Alternate Hypothesis</u>: More than 50% of the population prefers chocolate
 - H1: p > 0.5
 - Confidence Interval = 95% (using one-tailed t-test)
 - Standardized t-value = 0.7826
 - Calculated t-value = 0.6523
- Hence <u>null hypothesis is rejected</u>, majority of the population prefers chocolates as a serious gifting option

Factor Analysis – Factors Favoring Chocolates

Total Variance Explained

	Initial Eigenvalues		action S	ction Sums of Squared Loadation S				ared Loadi	
Compon	Total	of Varianc	umulative ^c	Total	of Varianc	umulative ^c	Total	of Varianc	umulative ^c
1	4.382	33.708	33.708	4.382	33.708	33.708	3.536	27.199	27.199
2	3.192	24.555	58.262	3.192	24.555	58.262	2.732	21.019	48.218
3	2.058	15.830	74.092	2.058	15.830	74.092	2.563	19.717	67.935
4	1.127	8.669	82.762	1.127	8.669	82.762	1.927	14.826	82.762
5	.787	6.052	88.814						
6	.445	3.422	92.236						
7	.387	2.977	95.213						
8	.286	2.203	97.415						
9	.188	1.443	98.858						
10	.144	1.111	99.969						
11	.002	.019	99.989						
12	.001	.008	99.997						
13	.000	.003	100.000						

Extraction Method: Principal Component Analysis.

Factor Analysis – Factors Favoring Chocolates

Component	Variables
1	R5, R7, R10
2	R4, R1, R2
3	R12, R11, R13
4	R8, R9

Rotated Component Matrix

	Component						
	1	2	3	4			
R1	.150	.843	.097	145			
R2	.029	.779	268	.317			
R3	064	.667	.234	.540			
R4	090	.806	.294	.078			
R5	.990	.034	.089	005			
R6	.128	.496	.350	.364			
R7	.989	.012	.084	001			
R8	.025	.041	061	.824			
R9	045	.152	136	.822			
R10	.989	.034	.104	.014			
R11	.505	.127	.825	103			
R12	187	.124	.902	057			
R13	.506	.127	.823	094			

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 6 iterations.

Factor Analysis – Factors Against Chocolates

	Initial Eigenvalues			action S	ums of Squ	ared Loadi	tation Su	ums of Squa	ared Loadir
Compone	Total	of Varianc	umulative ?	Total	of Varianc	umulative 9	Total	of Varianc	umulative 9
1	4.063	33.861	33.861	4.063	33.861	33.861	3.261	27.172	27.172
2	2.547	21.228	55.089	2.547	21.228	55.089	2.350	19.582	46.754
3	1.971	16.426	71.516	1.971	16.426	71.516	2.254	18.784	65.539
4	1.456	12.132	83.648	1.456	12.132	83.648	2.173	18.109	83.648
5	.821	6.840	90.487						
6	.466	3.884	94.371						
7	.315	2.627	96.998						
8	.185	1.539	98.537						
9	.109	.911	99.448						
10	.066	.552	100.000						
11	.000	.000	100.000						
12	.000	.000	100.000						

Total Variance Explained

Extraction Method: Principal Component Analysis.

Factor Analysis – Factors Against Chocolates

4 .903 -.185 .262 -.145 -.232 .264 .195 -.365 -.135 .188 .932

		1	2	3	
	Ag1	020	.801	.151	
	Ag2	.182	.239	.083	
	Ag3	.120	842	.277	
Δa10	Ag4	.871	017	.051	
Ayıu	Ag5	147	.408	.754	
y1	Ag6	.364	.728	.319	
4 4	Ag7	.564	145	.728	
	Ag8	.708	.378	.430	
12	Ag9	.809	250	.160	
	Ag10	.877	.106	011	
	Ag11	.173	070	.850	
	Ag12	164	057	.113	

Rotated Component Matfix

Component

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization

a. Rotation converged in 6 iterations.

Component	Variables
1	Ag4, Ag9, Ag10
2	Ag3, Ag1
3	Ag5, Ag11
4	Ag2, Ag12

Discriminant Analysis

How Good Is The Model?

			Predicted	Predicted Group Membership		
		Gifting_Option	Disagree	Agree	Strongly Agree	Total
Original	Count	Disagree	4	0	1	5
		Agree	2	10	2	14
		Strongly Agree	1	1	2	4
	%	Disagree	80.0	.0	20.0	100.0
		Agree	14.3	71.4	14.3	100.0
		Strongly Agree	25.0	25.0	50.0	100.0

Classification Resulfs

a. 69.6% of original grouped cases correctly classified.

Discriminant Analysis

Canonical Discriminant Function Coefficients

	Function				
	1	2			
Age	.077	.429			
Gender	786	-1.117			
Income	.027	.007			
Occupation	033	.641			
Education	1.742	731			
(Constant)	-3.689	1.267			

Unstandardized coefficients

Discriminant Equation

 $\mathbf{Y} = -3.689 + 0.77(\mathbf{Age}) - 0.786(\mathbf{Gender}) +$

0.027(Income) - 0.033(Occupation) + 1.742(Education)

Discriminant Analysis

Standardized Canonical Discriminant Function Coefficients

	Function			
	1	2		
Age	.128	.710		
Gender	393	559		
Income	.522	.132		
Occupation	021	.406		
Education	.800	336		

This shows that education is the best predictor to the coefficient of 0.8 followed by Income with coefficient of 0.522

Paired Comparison

	Family	Festival	Social Visits	Celebratory
Family	X	9*	22	17
Festival	13	X	17	19
Social Visits	3	7	X	9
Celebratory	8	5	14	X
SUM	24	21	53	45

* Read as 9 prefer gifting on festivals over family functions

Social visits are the most suitable occasions for gifting chocolates over sweets

Inferences

- Null Hypothesis (Ho): There is no significant difference in the pattern in which people choose their recipients for gifting sweets
- Alternate Hypothesis (Ha): There is a significant difference in the pattern in which people choose their recipients for gifting sweets.

Kendall's Coefficient of Concordance

Respondent	Friends	ProAcq	Relatives	BizClients
1	2	4	1	3
2	2	4	1	3
3	3	1	4	2
4	4	3	1	2
5	2	4	1	3
6	1	4	2	3
7	1	3	2	4
8	2	4	1	3
9	2	4	1	3
10	3	2	4	1
11	2	3	1	4
12	2	3	1	4
13	2	3	1	4
14	1	3	2	4
15	1	2	4	3
16	1	0	2	0
17	2	0	1	0
18	1	4	2	3
19	2	3	1	4
20	1	4	2	3
21	4	1	3	2
22	3	2	1	4
23	3	4	1	2
24	1	1	1	4
25	1	2	1	4
26	1	0	2	0
27		4	1	2
28	2	3	1	4
29		2	2	0
30	1	4	1	1
3 Sum (Bi)	3	4	2	4
Sum (Kj)	58	85	51	83
(Ri - Ri bar)^	126.5625	248.0625	333.0625	189.0625

Kendall's Coefficient of Concordance

s = 896.75W = 0.1866k = 31n = 4Confidence Level = 95%Calculated chi-square = 17.35Standardized value = 7.815

Hence Null Hypothesis is rejected

Conclusion

There is a significant difference in the pattern in which people choose their recipients for gifting sweets

Conclusion

- People have a preference for gifting chocolates
- Most important factors going in favor of gifting chocolates are:
 - Celebrity endorsement
 - Something different
 - Online gifting options
- Factors going against chocolates are:
 - Quality issues
 - The perception that chocolates are meant for kids
 - Can't be consumed by all family members

Thank You

